
NASA/CR-2000-210080
ICASE Report No. 2000-2

Achieving High Sustained Performance in an
Unstructured Mesh CFD Application

W.K. Anderson
NASA Langley Research Center, Hampton, Virginia

W.D. Gropp and D.K. Kaushik
Argonne National Laboratory, Argonne, Illinois

D.E. Keyes
Old Dominion University, Norfolk, Virginia, Lawrence Livermore National
Laboratory, Livermore, California, and ICASE, Hampton, Virginia

B.F. Smith
Argonne National Laboratory, Argonne, Illinois

January 2000

2 0'

The NASA STI Program Offke ... in Profile

Since its founding, NASA has been dedicated *CONFERENCE PUBLICATIONS.
to the advancement of aeronautics and space Collected papers from scientific and
science. The NASA Scientific and Technical technical conferences, symposia,
Information (STI) Program Office plays a key seminars, or other meetings sponsored or
part in helping NASA maintain this co-sponsored by NASA.
important role.

SPECIAL PUBLICATION. Scientific,
The NASA STI Program Office is operated by technical, or historical information from
Langley Research Center, the lead center for NASA programs, projects, and missions,
NASA's scientific and technical information, often concerned with subjects having
The NASA STI Program Office provides substantial public interest.
access to the NASA STI Database, the
largest collection of aeronautical and space *TECHNICAL TRANSLATION. English-
science STI in the world. The Program Office language translations of foreign scientific
is also NASA's institutional mechanism for and technical material pertinent to
disseminating the results of its research and NASA's mission.
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report Specialized services that help round out the
types: STI Program Office's diverse offerings include

creating custom thesauri, building customized

" TECNICL PULICTIO. Reort ofdatabases, organizing and publishing

completed research or a major significantreachesls..vnpoidgvdo.
phase of research that present the results
of NASA programs and include extensive For more information about the NASA STI
data or theoretical analysis. Includes Program Office, you can:
compilations of significant scientific and
technical data and information deemed * Access the NASA STI Program Home
to be of continuing reference value. NASA Page at http://www.sti.nasa.gov/STI-
counter-part or peer-reviewed formal homepage.html
professional papers, but having less
stringent limitations on manuscript - Email your question via the Internet to
length and extent of graphic help@ sti.nasa.gov
presentations.

"* TECHNICAL MEMORANDUM. * Fax your question to the NASA Access

Scientific and technical findings that are Help Desk at (301) 621-0134

preliminary or of specialized interest,
e.g., quick release reports, working - Phone the NASA Access Help Desk at
papers, and bibliographies that contain (301) 621-0390
minimal annotation. Does not contain
extensive analysis. - Write to:

NASA Access Help Desk
"* CONTRACTOR REPORT. Scientific and NASA Center for AeroSpace Information

technical findings by NASA-sponsored 7121 Standard Drive
contractors and grantees. Hanover, MD 2 1076-1320

NASA/CR-2000-210080
ICASE Report No. 2000-2

Achieving High Sustained Performance in an
Unstructured Mesh CFD Application

W.K. Anderson
NASA Langley Research Center, Hampton, Virginia

W.D. Gropp and D.K. Kaushik
Argonne National Laboratory, Argonne, Illinois

D.E. Keyes
Old Dominion University, Norfolk, Virginia, Lawrence Livermore National
Laboratory, Livermore, California, and ICASE, Hampton, Virginia

B.F. Smith
Argonne National Laboratory, Argonne, Illinois

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center, Hampton, VA
Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NAS 1-97046

January 2000

Available from the following:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 487-4650

ACHIEVING HIGH SUSTAINED PERFORMANCE IN AN UNSTRUCTURED MESH

CFD APPLICATION

W.K. ANDERSON', W.D. GROPPt, D.K. KAUSHIK:, D.E. KEYES§, AND B.F. SMITH¶

Abstract. This paper highlights a three-year project by an interdisciplinary team on a legacy F77
computational fluid dynamics code, with the aim of demonstrating that implicit unstructured grid simulations

can execute at rates not far from those of explicit structured grid codes, provided attention is paid to

data motion complexity and the reuse of data positioned at the levels of the memory hierarchy closest

to the processor, in addition to traditional operation count complexity. The demonstration code is from
NASA and the enabling parallel hardware and (freely available) software toolkit are from DOE, but the
resulting methodology should be broadly applicable, and the hardware limitations exposed should allow

programmers and vendors of parallel platforms to focus with greater encouragement on sparse codes with

indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree

of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-
processor nodes of Sandia's "ASCI Red" Intel machine, corresponding to a sustained floating-point rate of

0.227 Tflop/s.

Key words. high-performance computing, parallel implicit solvers, computational aerodynamics, memory-
centric computation

Subject classification. Computer Science

1. Overview. Many applications of economic and national security importance require the solution of
nonlinear partial differential equations (PDEs). In many cases, PDEs possess a wide range of time scales-

some (e.g., acoustic) faster than the phenomena of prime interest (e.g., convective), suggesting the need
for implicit methods. In addition, many applications are geometrically complex and possess a wide range

of length scales. Unstructured meshes are often employed in such cases to accomplish mesh generation
and adaptation (almost) automatically and to resolve the PDE without requiring an excessive number

of mesh points. The best algorithms for solving nonlinear implicit problems are often Newton methods,
which themselves require the solution of very large, sparse linear systems. The best algorithms for these

sparse linear problems, particularly at very large sizes, are often preconditioned iterative methods. This

* Fluid Mechanics and Acoustics Division, NASA Langley Research Center, Hampton, VA 23682,

w.k. andersontlarc .nasa. gov.
tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, groppcmcs.anl.gov. This

work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

tMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 and Computer Science
Department, Old Dominion University, Norfolk, VA 23529, kaushik~cs.odu.edu. This work was supported by a GAANN
Fellowship from the U.S. Department of Education and by Argonne National Laboratory under Contract 983572401.

§Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529, ISCR, Lawrence Livermore National
Laboratory, Livermore, CA 94551, and ICASE, NASA Langley Research Center, Hampton, VA 23681, keyes~icase.edu. This
work was supported by the National Science Foundation under Grant ECS-9527169, by NASA under Contract Nos. NASI-97046

and NAS1-19480 (while the author was in residence at ICASE), by Argonne National Laboratory under Contract 982232402,
and by Lawrence Livermore National Laboratory under Subcontract B347882.

¶Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, bsmith~mcs.anl.gov. This
work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram of the Office

of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

1

nested hierarchy of tunable algorithms has proved effective in solving complex problems in areas such as

aerodynamics, combustion, radiation transport, and global circulation. Typically, for steady-state solutions

from a trivial initial guess, the number of "work units" (evaluations of the discrete residuals on the finest

mesh on which the problem is represented) is around 10' (to achieve reductions in the norm of the residual

of 10- to 10-12). Although these algorithms are efficient (in the sense of using relatively few floating-point

operations to arrive at the final result), they do not necessarily achieve the absolute flops-per-second (flop/s)

ratings that less efficient or less versatile algorithms may [3].

Our submission focuses on the time to solution rather than the achieved floating-point performance as

the figure of merit. We have achieved a performance of 15 microseconds per degree of freedom on a mesh

with 2.8 million vertices using 3072 dual-processor nodes of ASCI Red, and 36 microseconds per degree

of freedom on 1024 processors of an SGI/Cray T3E. These figures correspond to sustained floating-point

rates of 227 Gflop/s and 76 Gflop/s, respectively. The code is also nearly scalable, showing linear scaling in

computation rate between 128 and 3072 nodes for a fixed-size problem, and only a modest degradation in

algebraic convergence rate over the same range.

The code spends almost all of its time in two phases: flux computations (to evaluate conservation law

residuals) and sparse linear algebraic kernels. The linear algebraic kernels run at close to the aggregate

memory-bandwidth limit on performance (as determined by the STREAM benchmarks [15]), and the flux

computations are bounded either by memory bandwidth or instruction scheduling (see the analysis in [8]).

This level of performance (in excess of 100 Gflop/s) is well above what is commonly considered achievable

for sparse-matrix and unstructured mesh computations and requires a combination of scalable algorithms

and data structure optimizations, as well as powerful, tightly networked computers. See, for example, the

comments by the "High End Crusader" [6, 7], who has called for a benchmark to focus attention on the

difficulty of sparse, unstructured problems.

As a bonus, our message-passing code relies on no special architectural features or proprietary com-

piler licenses, but is based on the MPI standard, allowing the application to take advantage of continuing

improvements in hardware performance without further software development.

2. The Application. The application code, FUN3D, is a tetrahedral vertex-centered unstructured

mesh code developed by W. K. Anderson of the NASA Langley Research Center for compressible and

incompressible Euler and Navier-Stokes equations [1, 2]. FUN3D uses a control volume discretization with

variable-order Roe schemes for approximating the convective fluxes and a Galerkin discretization for the

viscous terms. FUN3D is being used for design optimization of airplanes, automobiles, and submarines, with

irregular meshes comprising several million mesh points. The optimization loop involves many analysis cycles.

Thus, reaching the steady-state solution in each analysis cycle in a reasonable amount of time is crucial to

conducting the design optimization. From the beginning, our effort has been focused on minimizing the time

to convergence without compromising scalability, by means of appropriate algorithms and architecturally

efficient data structures.

We have ported FUN3D into PETSc framework and tuned it for good cache performance and distributed

parallel systems, using the single program multiple data (SPMD) programming model. This new variant

(PETSc-FUN3D) is being used to run Navier-Stokes applications with the Spalart-Almaras turbulence model

[17] on modest-sized problems, and we expect to scale up these more phenomenologically complex problems

in coming months, while also beginning to cope with parallelization of the preprocessing.

Thus far, our large-scale parallel experience with PETSc-FUN3D is with the compressible or incom-

pressible Euler subset, but nothing in the solution algorithms or software changes with additional physical

2

phenomenology. Of course, the convergence rate will vary with conditioning, as determined by Mach and

Reynolds numbers and the correspondingly induced mesh adaptivity. Furthermore, robustness becomes more
of an issue in problems admitting shocks or using turbulence models. The lack of nonlinear robustness is a

fact of life that is largely outside of the domain of parallel scalability. In fact, when nonlinear robustness
is restored in the usual manner, through pseudo-transient continuation, the conditioning of the linear in-
ner iterations is enhanced, and parallel scalability may be improved. In some sense, the Euler code, with
its smaller number of flops per point per iteration, and its aggressive pseudotransient buildup toward the

steady-state limit, may be a more, not less, severe test of parallel performance.

3. Algorithms and Data Structures. Achieving high sustained performance, in terms of solutions
per second, involves three aspects. The first is a scalable algorithm in the sense of convergence rate. The
second is good per-processor performance on contemporary cache-based microprocessors. The third is a
scalable implementation, in the sense of time per iteration as the number of processors increases. Our

nonlinear method, pseudo-transient Newton-Krylov-Schwarz (TNKS), is an efficient algorithm, as the chart
of nonlinear iterations in Figure 5.1 shows. The per-processor performance is also quite good; in fact, it is
close to the memory-bandwidth limit (a more realistic measure of achievable performance than peak floating-
point for sparse problems [8]). Moreover, on any architecture with a sufficiently rich interconnection network,
TlNKS leads to good per-iteration scalability, as argued from a simple analytical model in [14].

3.1. TNKS Solver. Our implicit algorithmic framework for advancing toward an assumed steady
state, f(u) = 0, has the form (A--L)u' +f(u') = (-)ue-l, where Ate - co as f --4 c, u represents the fully
coupled vector of unknowns, and f(u) is the vector of nonlinear conservation laws.

Each member of the sequence of nonlinear problems, t = 1, 2,..., is solved with an inexact Newton
method. The resulting Jacobian systems for the Newton corrections are solved with a Krylov method, relying
directly only on matrix-free operations. The Krylov method needs to be preconditioned for acceptable inner
iteration convergence rates, and the preconditioning can be the "make-or-break" feature of an implicit code.
A good preconditioner saves time and space by permitting fewer iterations in the Krylov loop and smaller
storage for the Krylov subspace. An additive Schwarz preconditioner [5] accomplishes this in a concurrent,
localized manner, with an approximate solve in each subdomain of a partitioning of the global PDE domain.
The coefficients for the preconditioning operator are derived from a lower-order, sparser, and more diffusive

discretization than that used for f(u), itself. Applying any preconditioner in an additive Schwarz manner
tends to increase flop rates over the same preconditioner applied globally, since the smaller subdomain blocks
maintain better cache residency, even apart from concurrency considerations [18]. Combining a Schwarz
preconditioner with a Krylov iteration method inside an inexact Newton method leads to a synergistic,
parallelizable nonlinear boundary value problem solver with a classical name: Newton-Krylov-Schwarz (NKS)
[9]. We combine NKS with pseudo-timestepping [13] and use the shorthand QNKS to describe the algorithm.

To implement this algorithm in FUN3D, we employ the PETSc package [4], which features distributed

data structures-index sets, vectors, and matrices-as fundamental objects. Iterative linear and nonlinear
solvers are implemented within PETSc in a data structure-neutral manner, providing a uniform application
programmer interface. Portability is achieved in PETSc through MPI, but message-passing detail is not

required in the application. We use MeTiS [10] to partition the unstructured mesh.

3.2. Memory-Centric Computation. We view a PDE computation predominantly as a mix of loads

and stores with embedded floating-point operations (flops). Since flops are cheap relative to memory refer-
ences, we concentrate on minimizing the memory references and emphasize strong sequential performance as

3

* Base NOER U Interlacing NOER 0 Bloclkng NOER
* Base U Interlacing N Blocking

180-

160-'

140-

120-!

100-

40-'

20-'

0
SP Origin Pentium

FiO. 3.1. The effect of cache optimizations on the average execution time for one nonlinear iteration. BASE denotes the

case without arty optimizations, and NOER denotes no edge reordering. The performance improves by a factor of about 2.5

on the Pentium and 7.5 on the IBM SP. The processor details are: 120 MHz IBM SP (P2SC "thin", 128 KB LI), 250 MIz

Origin 2000 (R10000, 32 KB L1, and 4 MB L2), 400 MHz Pentium II (running Windows NT 4.0, 16 KB LI, and 512 KB

L2).

one of the factors needed for aggregate performance worthy of the theoretical peak of a parallel machine. We

use interlacing (creating spatial locality for the data items needed successively in time), structural blocking

for a multicomponent system of PDEs (cutting the number of integer loads significantly, and enhancing

reuse of data items in registers), and vertex and edge reorderings (increasing the level of temporal locality).

Applying these techniques required whole-program transformations of certain loops of the original vector-

oriented FUN3D, but raised the per-processor performance by a factor of between 2.5 and 7.5 (Figure 3.1),

depending on the microprocessor and optimizing compiler [12].

The importance of memory bandwidth to the overall performance is suggested by the single-processor

performance of PETSc-FUN3D shown in Figure 3.2. The performance of PETSc-FUN3D is compared to the

peak performance and the result of the STREAM benchmark [15] which measures achievable performance

for memory bandwidth-limited computations. These comparisons show that the STREAM results are much

better indicators of realized performance than the peak numbers. The parts of the code that are memory

bandwidth-limited (like the sparse triangular matrix solution phase, which is responsible for 25% of the overall

execution time) are bound to show poor performance, as compared to dense matrix-matrix operations, which

often come within 10-20% of peak. Even parts of the code that are not memory intensive often achieve much

less than peak performance because of the limits on the number of basic operations that can be performed

in a single clock cycle [8]. This is true for the flux calculation routine in PETSc-FUN3D, which consumes

over 50% of the overall execution time. Instruction scheduling limits the performance to 47% of the peak on

250 MHz SGI Origin 2000 even under a perfect memory system (leading to an estimate of 235 Mflops/s),

which is close to the value of 209 Mflops/s experimentally measured by the Origin's hardware counters.

The basic philosophy of any efficient parallel computation is "owner computes," with message merging

and overlapping communication with computation where possible via split transactions. Each processor
"ghosts" its stencil dependencies on its neighbors' data. Grid functions are mapped from a global (user)

4

N Peak Mflops/s U Stream Triad M flops/s [Observed Mflops/s

900-

800 -

700 -

600 --

500-

400 -

300 -

200--

SP Origin T3E

FIG. 3.2. Sequential performance of PETSc-FUN3D for a coarse mesh of 22,677 vertices (with .4 unknowns per vertex).

The processor details for IBM SP and Origin 2000 are the same as in Figure 3.1. The SGI/Cray T3E is based on a 450 MHz

DEC Alpha 21164 with 8 KB Li cache and 96 KB unified L2 cache.

ordering into contiguous local orderings (which, in unstructured cases, are designed to maximize spatial

locality for cache line reuse). Scatter/gather operations are created between local sequential vectors and
global distributed vectors, based on runtime-deduced connectivity patterns.

4. Measuring the Parallel Performance. We use PETSc's profiling and logging features to measure

the parallel performance. PETSc logs many different types of events and provides valuable information about

time spent, communications, load balance, and so forth, for each logged event. PETSc uses manual counting

of flops, which are afterwards aggregated over all the processors for parallel performance statistics. We
have observed that the flops reported by PETSc are close to (within 10 percent of) the values statistically

measured by hardware counters on R10000 processor.

PETSc uses the best timers available in each processing environment. In our rate computations, we

exclude the initialization time devoted to I/O and data partitioning. To suppress timing variations caused

by paging in the executable from disk, we preload the code into memory with one nonlinear iteration, then

flush, reload the initial iterate, and begin performance measurements.

Since we are solving large fixed-size problems on distributed memory machines, it is not reasonable to

base parallel scalability on a uniprocessor run, which would thrash the paging system. Our base processor

number is such that the problem has just fit into the local memory. We have employed smaller sequential

cases to optimize cached data reuse [11, 12] to minimize the execution time. In the results below, we

decompose the parallel efficiency into two factors: algorithmic efficiency, measuring the effect of increased
granularity on the number of iterations to convergence, and implementation efficiency, measuring the effect

of increased granularity on per-iteration performance.

5. Scalability Studies. We present three aspects of scalability in this section. Throughout we use

unstructured tetrahedral meshes of the standard Onera M6 wing closed with a symmetry plane inboard,

prepared for us by colleagues at the NASA Langley Research Center. On the two machines with the finest

granularity available to us to date, a Cray T3E with 1024 600 MHz Alpha processors and a partition of

5

ASCI Red with 3072 333 MHz Pentium Pro dual-processor nodes, we show several metrics of fixed-size

scalability on our finest mesh. On machines representative of the two ASCI Blue machines (an IBM SP and

an SGI Origin) and on a T3E with 450 MHz processors, we compare executions of the same code on an

intermediate fixed-size problem on up to 80 processors (the maximum available on our SP configuration).

Finally, to convey some idea of the sensitivity of the Newton method to the severity of the nonlinearity, and

of the sensitivity of the preconditioned Krylov solver with respect to different conditioning inherited from

different Mach numbers of the simulation, we present some comparisons across Mach number (incompressible

to supersonic). This study also gives an indication of the sensitivity of the floating point performance to the

blocksize of the unknown vector, which is four in the incompressible case and five in the compressible cases.

5.1. Parallel Scalability on the T3E. The parallel scalability of PETSc-FUN3D is shown in Fig-

ure 5.1 for a mesh with 2.8 million vertices running on up to 1024 Cray T3E processors. We see that the

implementation efficiency of parallelization (i.e., the efficiency on a per-iteration basis) is 82 percent in going

from 128 to 1024 processors. The number of iterations is also fairly flat over the same eightfold range of

processor number (rising from 37 to 42), reflecting reasonable algorithmic scalability. This is much less

serious degradation than predicted by the linear elliptic theory (see [16]); pseudo-timestepping--required by

the nonlinearity-is responsible. The overall efficiency is the product of the implementation efficiency and

the algorithmic efficiency. The Mflop/s per processor are also close to flat over this range, even though the

relevant working sets in each subdomain vary by nearly a factor of eight. This emphasizes the requirement

of good serial performance for good parallel performance.

5.2. Parallel Scalability on ASCI Red. The same fixed-size problem is run on large ASCI Red

configurations with sample scaling results shown in Figure 5.2. The implementation efficiency is 94% in

going from 256 to 2048 nodes (and 95% in going from 128 to 2048 nodes, due to slightly worse cache

performance in the 128-node run). For the data in Figure 5.2, we employed the -procs 1 runtime option on

ASCI Red, which dedicates a communication processor to every execution processor. The -procs 2 runtime

option enables 2-processor-per-node multithreading during threadsafe, communication-free portions of the

code. We have activated this feature for the floating-point-intensive flux computation subroutine alone. On

2048 nodes, the resulting Gflop/s rate is 156, or 30% greater than for the single-threaded case on the same

number of nodes. On 3072 nodes, the largest run we have been able to make on the unclassified side of the

machine to date, the resulting GFlop/s rate is 227. Undoubtedly, further improvements to the algebraic

solver portion of the code are also possible through multithreading, but the additional coding work does not

seem justified at present.

5.3. Parallel Scalability across Architectures. Cross-platform performance comparisons of a medium-

size wing problem over a common set of processor numbers are given in Table 1, which lists overall efficiencies.

The 16-processor run has approximately 22,369 vertices per processor; the 80-processor run has approxi-

mately 4,473. Decreasing volume-to-surface ratios in the subdomains and increasing depth of the global

reduction spanning tree of the processors lead to gradually decaying efficiency. The convergence rate, in

terms of pseudo-time steps to achieve a relative reduction of steady-state residual norm of 10-12, degrades

only slowly with increased partitioning. Exactly one Newton iteration is performed on each pseudo-time

step, and the Krylov space restart size is 30, with a maximum of one restart. The slight differences in the

numbers of timesteps arise from slightly different floating point arithmetic and/or noncommutative sum-

mation of global inner products, which lead to slightly different trajectories to the same steady state. The

Origin is the fastest per processor (achieving the highest percentage of peak sequentially). The T3E has the

6

2.5 10
4 2500

Avg. Vertices per Proc. Execution Time (s)
2 20

1.5 1500

1 1000

0.5
500-1

0,0
128 256 384 512 640 768 896 1024 128 256 384 512 640 768 896 1024

1.2 - 50

Implementation Efficiency Nonlinear Iterations
1 40-

0.8
30

0.6
20

0.4

0.2 10

0 I I - 0
128 256 384 512 640 768 8961024 128 256 384 512 640 768 8961024

ioo 80

Mflop/s per Proc. Aggregate Gflop/s

80 60

60
40

40

20

20 111111

0 128 256 384 512 640 768 896 1024 128 256 384 512 640 768 896 1024

FIG. 5.1. Parallel performance for a fixed size mesh of 2.8 million vertices run on up to 1024 Cray T3E 600 MHz Alpha

processors.

TABLE 5.1

Transonic flow over M6 wing; fixed-size mesh of 357,900 vertices.

No. Cray T3E IBM SP SGI Origin

Procs. Steps I Time IEff. Steps I Time I Eff. Steps I Time Eff.

16 55 2406s - 55 1920s - 55 1616s -

32 57 1331s .90 57 l100s .87 56 862s .94

48 57 912s .88 57 771s .83 56 618s .87

64 57 700s .86 56 587s .82 57 493s .82

80 57 577s .83 59 548s .70 57 420s .77

best scalability, due to its torus network, which is fast compared with sequential processor performance. The
full problem fits on smaller numbers of processors on the Origin, but "false" superunitary parallel scalability

results because of the cache thrashing when too many vertices are assigned to a processor; 5,000 to 20,000

vertices per processor is a reasonable load for this code.

7

12000 2000

Avg. Vertices per Proc. 1800 Execution Time (s)
10000 1600

1400
8000

1200

6000 1000

800

4000

400-

200040 k
256 512 768 1024 1280 1536 1792 2048 256 512 768 1024 1280 1536 1792 2048

1.2i 60

Implementation Efficiency 6 Nonlinear Iterations

0.8 40[

0.6 30

0.4

0.2 10

256 512 768 1024 1280 1536 1792 2048 256 512 768 1024 1280 1536 1792 2048

80 iso

70 Mflop/s per Proc. Aggregate Gflop/s

60

00 100

40

30

1 20

A I
10

256 512 768 1024 1280 1536 1792 2048 256 012 768 1024 1280 1536 1792 2048

FIc. 5.2. Parallel performance for a fixed size mesh of 2.8 million vertices run on up to 2048 ASCI Red 333 Mllz Pentium

Pro processors.

A plot showing aggregate flop/s performance and a log-log plot showing execution time for our largest

case on the three most capable machines to which we have thus far had access are shown in Figures 5.3 and

5.4. In both figures, lines of unit slope (positive and negative, resp.) show the departure from optimality.

Note that although the ASCI Red flop/s rate scales nearly linearly, a higher fraction of the work is redundant

at higher parallel granularities, so the execution time does not drop in exact proportion to the increase in

flop/s.

5.4. Parallel Scalability across Flow Regimes. Trans-Mach convergence comparisons of the same

problem are given in Table 2. Here efficiencies are normalized by the number of timesteps, to factor con-

vergence degradation out of the performance picture and measure implementation factors alone (though

convergence degradation with increasing granularity is modest). The number of steps increases dramatically

with the nonlinearity of the flow, as Mach rises; however, the linear work per step decreases on average.

Reasons for this include smaller pseudo-timesteps in early nonlinear iterations and the increased hyperbol-

icity of the flow. The compressible Jacobian is far more complex to evaluate, but its larger blocks (5 x 5

instead of 4 x 4) concentrate locality, achieving much higher computational rates than the corresponding

8

300

Aggregate Gflop/s
250 vs. # nodes

-- Asci Red

200

150,

100

7 T3E

50 -
50 .- - Asci Blue

ý.0
0 500 1000 1500 2000 2500 3000 3500 4000

FIG. 5.3. Fixed-size parallel scaling results: flop/s.

104

Execution Time (s)
vs. # nodes

103

, . Asci Blue

Asci Red

0210 2 103 104

FIG, 5.4. Fixed-size parallel scaling results: execution time.

incompressible Jacobian.

6. Conclusion. High sustained scalable performance has been demonstrated on simulations that use
implicit algorithms of choice for unstructured PDEs. In the history of the peak performance Bell Prize

competition, PDE-based computations have led (or been part of leading entries containing multiple appli-

cations) in 1988, 1989, 1990, and 1996. All of these leading entries have been obtained on vector or SIMD
architectures, and all were based on structured meshes. The last (1996) and most impressive of these PDE-

based entries was executed on 160 vector nodes of the Japanese Numerical Wind Tunnel (NWT), and ran

at 111 Gflop/s. The 227 Gflop/s sustained performance of our unstructured application on a hierarchical

distributed memory multiprocessor in the SPMD programming style exceeds that of the 1996 entry by a

9

TABLE 5.2

Flow over M6 wing on SGI Origin; fixed-size mesh of 357,900 vertices (1,431,600 DOFs incompressible, 1,789,500 DOFs

compressible).

No. Time per Per-Step Impl. FcnEval 1 JacEval

Procs. Steps Step Speedup J Eff. Mflop/s Mflop/s

Incompressible (4 x 4 blocks)

16 19 41.6s - - 2,630 359

32 19 20.3s 2.05 1.02 5,366 736

48 21 14.1s 2.95 0.98 7,938 1,080

64 21 11.2s 3.71 0.93 10,545 1,398

80 21 10.1s 4.13 0.83 1 11,661 1,592

Subsonic (Mach 0.30) (5 x 5 blocks)

16 17 55.4s - - 2,002 2,698

32 19 29.8s 1.86 0.93 3,921 5,214

48 19 20.5s 2.71 0.90 5,879 7,770

64 20 14.3s 3.88 0.97 8,180 10,743

80 20 12.7s 4.36 0.87 9,452 12,485

Transonic (Mach 0.84) (5 x 5 blocks)

16 55 29.4s - - 2,009 2,736

32 56 15.4s 1.91 0.95 4,145 5,437

48 56 li.0s 2.66 0.89 5,942 7,961

64 57 8.7s 3.39 0.85 8,103 10,531

80 57 7.4s 3.99 0.80 9,856 12,774

Supersonic (Mach 1.20) (5 x 5 blocks)

16 80 I 19.2s - - 2,025 2,679

32 81 10.6s 1.81 0.90 3,906 5,275

48 81 7.1s 2.72 0.91 6,140 7,961

64 82 5.8s 3.31 0.83 7,957 10,398

80 4.6s 4.20 0.84 9,940 12,889

factor of two.

The achieved flop/s rate is less important to computational engineers than are solutions per minute of

discrete systems that are general enough to be employed in production design, as PETSc-FUN3D is now

employed. In addition, PETSc-FUN3D is a portable message-passing application that runs on a variety of

platforms with good efficiency, thus lowering the total cost of achieving high performance over the lifetime

of the application.

7. Acknowledgments. Computer time was supplied by Argonne National Laboratory, Lawrence Liv-

ermore National Laboratory, NERSC, Sandia National Laboratory, and SGI-Cray.

REFERENCES

[1] W. K. ANDERSON AND D. L. BONHAUS, An implicit upwind algorithm for computing turbulent flows

on unstructured grids, Computers and Fluids, 23 (1994), pp. 1-21.

10

[2] W. K. ANDERSON, R. D. RAUSCH, AND D. L. BONHAUS, Implicit/multigrid algorithms for incompress-

ible turbulent flows on unstructured grids, Journal of Computational Physics, 128 (1996), pp. 391-

408.

[3] D. F. BAILEY, How to fool the masses when reporting results on parallel computers, Supercomputing

Review, (1991), pp. 54-55.

[4] S. BALAY, W. GROPP, L. C. MCINNES, AND B. SMITH, The Portable, Extensible, Toolkit for Scientific

Computing (PETSc) ver. 22. http://www.mcs.an1.gov/petsc/petsc.html, 1998.

[5] X. C. CAI, Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial

differential equations, Technical Report 461, Courant Institute, New York, 1989.

[6] H. E. CRUSADER, Peak performance versus bandwidth. HPCC Week, November 1998.

[7] -, Towards a U.S. sparse-matrix policy. HPCC Week, December 1998.

[8] W. D. GROPP, D. K. KAUSHIK, D. E. KEYES, AND B. F. SMITH, Toward realistic performance bounds

for implicit CFD codes, in Proceedings of Parallel CFD'99, A. Ecer et al., eds., Elsevier, 1999.

[9] W. D. GROPP, L. C. MCINNES, M. D. TIDRIRI, AND D. E. KEYES, Parallel implicit PDE computa-

tions, in Proceedings of Parallel CFD'97, A. Ecer et al., eds., Elsevier, 1997, pp. 333-344.

[10] G. KARYPIS AND V. KUMAR, A fast and high quality schema for partitioning irregular graphs, SIAM

J. Scientific Computing, 20 (1999), pp. 359-392.

[11] D. K. KAUSHIK, D. E. KEYES, AND B. F. SMITH, On the interaction of architecture and algorithm

in the domain-based parallelization of an unstructured grid incompressible flow code, in Proceedings

of the 10th International Conference on Domain Decomposition Methods, J. Mandel et al., eds.,

Wiley, 1997, pp. 311-319.

[12] - , Newton-Krylov-Schwarz methods for aerodynamic problems: Compressible and incompressible

flows on unstructured grids, in Proceedings of the 11th International Conference on Domain Decom-

position Methods, C.-H. Lai et al., eds., Domain Decomposition Press, Bergen, 1999.

[13] C. T. KELLEY AND D. E. KEYES, Convergence analysis of pseudo-transient continuation, SIAM J.

Numerical Analysis, 35 (1998), pp. 508-523.

[14] D. E. KEYES, How scalable is domain decomposition in practice?, in Proceedings of the 11th Interna-

tional Conference on Domain Decomposition Methods, C.-H. Lai et al., eds., Domain Decomposition

Press, Bergen, 1999.

[15] J. D. MCCALPIN, STREAM: Sustainable memory bandwidth in high performance computers, tech. rep.,

University of Virginia, 1995. http://www. cs. virginia. edu/stream.

[16] B. F. SMITH, P. BJORSTAD, AND W. GROPP, Domain Decomposition, Cambridge University Press,

1996.

[17] P. R. SPALART AND S. R. ALLMARAS, A one-equation turbulence model for aerodynamic flows, La

Recherche Aerospatiale, 1 (1994), pp. 5-21.

[18] G. WANG AND D. K. TAFTI, Performance enhancements on microprocessors with hierarchical memory

systems for solving large sparse linear systems, Int. J. High Performance Computing Applications,

13 (1999), pp. 63-79.

11

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 2000 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Achieving high sustained performance in an unstructured mesh CFD
application C NAS1-97046

WU 505-90-52-01

6. AUTHOR(S)

W.K. Anderson, W.D. Gropp, D.K. Kaushik,
D.E. Keyes, and B.F. Smith

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science and Engineering REPORT NUMBER
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 2000-2
Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER
Langley Research Center NASA/CR-2000-210080
Hampton, VA 23681-2199 ICASE Report No. 2000-2

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in the Proceedings of SC'99.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category 60, 61
Distribution: Nonstandard
Availability: NASA-CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)
This paper highlights a three-year project by an interdisciplinary team on a legacy F77 computational fluid dynamics
code, with the aim of demonstrating that implicit unstructured grid simulations can execute at rates not far from
those of explicit structured grid codes, provided attention is paid to data motion complexity and the reuse of data
positioned at the levels of the memory hierarchy closest to the processor, in addition to traditional operation count
complexity. The demonstration code is from NASA and the enabling parallel hardware and (freely available) software
toolkit are from DOE, but the resulting methodology should be broadly applicable, and the hardware limitations
exposed should allow programmers and vendors of parallel platforms to focus with greater encouragement on sparse
codes with indirect addressing. This snapshot of ongoing work shows a performance of 15 microseconds per degree
of freedom to steady-state convergence of Euler flow on a mesh with 2.8 million vertices using 3072 dual-processor
nodes of Sandia's "ASCI Red" Intel machine, corresponding to a sustained floating-point rate of 0.227 Tflop/s.

14. SUBJECT TERMS 15. NUMBER OF PAGES
high-performance computing, parallel implicit solvers, computational aerodynamics, 16
memory-centric computation 16. PRICE CODE

A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATIO 19. SECURITY CLASSIFICATION 20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified

NJSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

ERRATA

NASA/CR-2000-209838

Achieving High Sustained Performance in an Unstructured
Mesh CFD Application

W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith

January 2000

An incorrect NASA report number was inadvertently included on the report. The correct NASA
(\Y report number is NASA/CR-2000-210080.

A corrected copy of the report is attached. Please destroy all copies previously sent to you.

I

-K• Issued March 2000

